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Figure 9. Error analysis for our derived exoplanetary transmission spectra.
Each panel plots the standard deviation of the observed noise in our differential
transits, after removing the best-fit amplitude. The noise is shown as a function
of bin size. The blue lines are the relations expected for photon noise based on
the number of detected electrons, and accounting for the effect of smoothing
the grism spectra (Section 4.3). The blue lines have a slope of −0.5 due to the
expected inverse square-root dependence of the noise; the measured points are
in good agreement with that expectation.
(A color version of this figure is available in the online journal.)

the 2D spectral images over a range slightly less than their
height, to utilize pixels having similar exposure levels, to the
maximum possible degree. We similarly restrict our anal-
ysis to wavelengths well above the half-intensity points on
the grism sensitivity function, also to use pixels with similar
exposure levels as much as possible.

2. We integrate the grism spectra over wavelength within our
adopted wavelength range, and construct a band-integrated
transit curve. We fit to this transit curve to obtain the white-
light transit depth (R2

p/R2
s ). We save the white-light transit

depth to use below.
3. We smooth the grism spectra using a Gaussian kernel

with a FWHM = 4 pixels. This reduces the effect of
undersampling. We construct a template spectrum from
the out-of-transit smoothed spectra, and we shift it in
wavelength, and scale it linearly in intensity, to match
each individual grism spectrum, choosing the best shift
and scale factors using linear least-squares. We subtract the
shifted and scaled template to form residuals, and normalize
the residuals by dividing by the template spectrum. This
procedure removes the white-light transit, but preserves the
wavelength variation in transit depth.

Figure 10. Our results for transmission spectra for HD 209458b and XO-
1b in the WFC3 bandpass, compared to models based on Spitzer secondary
observations (blue lines). The spectral resolving power of these measurements
is λ/δ(λ) ≈ 70. The amplitude of the 1.4 µm water absorption is about 200
parts per million (ppm) in both cases, but the errors are smaller for HD 209458b
due to the greater photon flux. The ordinate (transit depth) is R2

p/R2
s , but Rp/Rs

is shown by the scale on the right, and the red bars indicate the pressure scale
heights for both planetary atmospheres. The water absorption we detect is about
two pressure scale heights.
(A color version of this figure is available in the online journal.)

4. At each wavelength, we fit a transit curve to the residuals
as a function of time, accounting for the wavelength
dependence of stellar limb darkening. We add the amplitude
of this transit curve (a “differential amplitude”) to the
depth of the white-light transit from above. We then co-
add the results in groups of four wavelengths (columns on
the detector) to match the smoothing described above. The
result is the exoplanetary transmission spectrum.

5. We determine errors using a residual-permutation method,
comparing those to errors calculated by binning the resid-
uals over increasing time intervals (to verify an inverse
square-root dependence), and by comparing to an ab initio
estimate of the photon noise.

6. We verify the sensitivity of the method to assure that it
does not numerically attenuate the exoplanetary spectrum.
We inject numerically an artificial spectrum into the data at
the earliest practical stage of the analysis, and we recover
it at the correct amplitude.
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analysis, (4) and the standard deviation in the mean of the residual
time series and find all methods give results consistent results for
these data (e.g., for the 1.3763-lm channel, the uncertainties for
these four methods are 179, 175, 178, and 170 ppm, respectively).

An additional correction needs to be considered in the case of
WASP-12b. As noted by Crossfield et al. (2012b), the presence of
a nearby star, identified as Bergfors-6, introduces an error in the
measured eclipse depths. Bergfors-6 is visible in WFC3 narrow
band filter images used for our wavelength calibration and detect-
able as an asymmetry in transverse profile of the WASP-12 system
spectrum. Separation of the light from Bergfors-6 from WASP-12 in

our WFC3 data is possible, but requires some care. Using the spec-
troscopy observations of HD 258439, we determined the chromatic
point spread function (PSF). The chromatic PSF was the used to fit
two components—that of WASP-12 and Bergfors-6—for each spec-
tral channel (see Fig. 8). This allowed a determination of the
amount of light originating from Bergfors-6 and WASP-12b; both
primary and secondary eclipse depths were then corrected, follow-
ing the method of Kipping and Tinetti (2010), for the Bergfors-6
contamination.

To assess the quality of the linear inter-orbit detrending meth-
od, we compared the measured noise to the theoretical photon
noise as a function of the number of spectral channels averaged
to create the time series. This analysis shows that the detector be-
haves very well in this readout mode; the presence of systemic
noise becomes detectable when 5 or more pixels are averaged to-
gether, but the systematic noise averages (see Fig. 9) down as pix-
els to the !0.4 power (!0.5 would be ideal). The signal-to-noise of
the final WASP-12b spectrum is increased by averaging together
seven individual channels weighted by the uncertainties and
achieves about 160 ppm or "1.15 times photon noise (see Fig. 10
and Table 2) and avoids the kinds of questions associated with
complex decorrelation methods. Recently, WFC3-IR measurements
of an exoplanet transmission spectrum have been reported by
Berta et al. (2012) using an approach termed the OOT method to
remove the large intra-orbit systematics found in 512 # 512
subarray data. As a consistency check, we applied the OOT method
to our WASP-12 data and find virtually identical results.

For a measurement precision of "160 ppm, corresponding to
averaging 7 pixel-based spectral channels together in these obser-
vations, the 256 # 256 subarray mode delivers nearly ideal noise
properties. When the entire 120-pixel passband is averaged
together, the measured noise of "52 ppm is about 1.45 times the
theoretical instrument precision (see Fig. 9). This is shows that
WFC3 IR is a very good instrument for exoplanet characterization.
Instrument systematic errors are present, but they average down
relatively well. Two separate instrument systematics become
detectable in the WASP-12b data when the entire spectral pass-

Fig. 9. The excellent performance of WFC3 is shown by a comparison of the
theoretical photon-limited noise, based on detected photons, and the standard
deviation of residuals for the primary eclipse measurements using a single HST
orbit centered on orbital phase !0.02 (see Fig. 1) as a function of the number of
pixel-based spectral channels averaged together. Instrument systematics become
detectable when 5 or more pixel-based spectral channels are averaged together.
However, these instrument systematic errors average down very well (only slightly
worse than the square root of bandwidth) and the ultimate performance of the
instrument is "1.45 times the photon noise for our observations.

Fig. 10. (Left) Dayside region emission spectrum (top) and terminator region transmission spectrum (bottom). The data averaged in the spectral dimension and statistically
independent measurements are shown as solid circles with ±1-r errors. The gray line shows the spectrum value computed using a scrolling boxcar. (Right) The dayside
emission spectrum in units of brightness temperature (top) and an uncertainty spectrum showing how each channel compares to the photon noise (bottom). These
measurements approach the theoretical limit for what is achievable with WFC3 in the IR grism spectroscopy mode.
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FIG. 3.— Transmission spectrum of the exoplanet HD 189733b compared to a theoretical model of a clear planetary atmosphere of solar composition. The
model spectrum has a vast number of water vapor lines; for clarity the model spectrum has been Gaussian smoothed to FWHM=0.03 µm.
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Figure 11. The K band differential transmission spectrum of the hot Jupiter HD-189733b (black points), with uncertainties of ±1σ . For comparison, we show the
SW08 spectrum (red dots) and the IRTF points rebinned on the NICMOS wavelengths (blue dots). Left: 2008 June 12; Right: 2008 July 22.
(A color version of this figure is available in the online journal.)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wavelength (microns)

0.0235

0.0240

0.0245

0.0250

0.0255

0.0260

A
bs

or
pt

io
n

J KH

y=0.0241934 (χ2~108.87)
H

2
O (5e−4) (χ2~53.26)

Telluric
Observations

Figure 12. 0.94–2.42 µm IRTF transmission spectrum compared to a simulated spectrum for water with a mixing ratio of 5×10−4, assuming an isothermal atmosphere
at T ∼ 1500 K. The χ2 value for this fit is also given, where the data values known to suffer from telluric contamination (marked “telluric” in the figure legend) were
excluded for this calculation. For reference, a straight line with a value equal to the mean of all of the data points (y = 0.0241934) is also shown, with the associated
χ2 value. For comparison, when optimizing the spectrum to the flat line, we obtain a χ2 =74.05.
(A color version of this figure is available in the online journal.)

6. CONCLUSIONS

We have presented here the first ground-based spectro-
scopic observations of the primary transit of the hot-Jupiter
HD-189733b, recorded with the NASA IRTF/SpeX instrument.
We have precleaned our data and applied the MCF technique,
finding that the J, H, and K bands spectra are consistent with
the collection of data sets recorded from space with Hubble.
The autocorrelation test demonstrates that correlations are effi-
ciently removed, that our residuals are normally distributed and
that autocorrelative noise is diminished at most frequencies. By
comparing the J,H , and K band 2008 June 12 spectra to syn-
thetic models, we found that water vapor with a mixing ratio
of around 10−4 and 5×10−4 explains the spectral modulations
from 0.94 to 2.42 µm. Our results alone are not sensitive enough
to give further constraints on other molecules, such as methane,

carbon dioxide, or carbon monoxide, as detected in other data
sets; however, by combining the information contained in other
data sets with our results, we can explain the available observa-
tions with a modeled atmospheric spectrum containing water va-
por, methane, carbon monoxide, and hazes/clouds. Future work
will involve obtaining broadband observations taken simultane-
ously, in order to avoid systematic effects resulting from stellar
variability and allowing the precise determination of molecular
abundances.

The work presented in this paper shows that low-resolution
exoplanet spectroscopy is indeed feasible with medium-sized
telescopes from the ground. While the telluric absorption
is a nonnegligible hurdle to the sounding of exoplanetary
atmospheres, the potential to repeat the observations with
relative ease makes the ground an appealing and complementary
option to space.
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Figure 6. Transmission spectrum of HAT-P-1b, derived us-
ing di↵erential photometry with individual-parameter fitting, for
�� = 19.2nm resolution shown as black squares. Over plotted
are the transmission spectra for a range of di↵erent wavelength
resolution bins: �� = 37.2nm in green; �� = 60.4nm in pink;
and �� = 74.4nm in blue.

model described by parameters allowed to vary within the
Kurucz grid of stellar spectra as a function of emergent an-
gle. EXOFAST (a fast exoplanetary fitting suite in IDL) also
uses the stellar mass-radius relation of Torres et al. (2008)
to constrain the stellar parameters, compared to fixed non-
linear limb-darkening parameters used in the L-M with un-
constrained stellar parameters. MCMC can be more robust
against finding local minima when searching the parameter
space, where the L-M may get trapped.
Each method produces similar results within the errors with
the main small di↵erences arising primarily from the di↵er-
ent limb-darkening fitting procedures.

The system parameters and uncertainties for, orbital
inclination, orbital period, a/R⇤, and centre of transit time
were constrained using a combined MCMC fit with three
HST/STIS transit observations, two using G430L and one
using G750L, and our WFC3 transit data (see Table 1).

The initial starting values for planetary and system
parameters were taken from Butler et al. (2006), Johnson
et al. (2008), and Torres et al. (2008). The best fit light curve
for the WFC3 transit along with the uncertainties associated
with the computation were determined using MPFIT giving
a final white light radius ratio of RP /R⇤ = 0.11709±0.00038
(see Fig. 4).

We also fit the white light curve for single target pho-
tometry as well as di↵erential photometry as shown in Fig.
4. Without di↵erential photometry there are systematics in
the data that increase the errors and the deviation from the
mean as shown by the residual plot at the bottom of Fig.
4, which shows that the di↵erential photometry reduces the
scatter in the residuals by a factor of three. For both light
curves the red noise, defined as the noise correlated with
time (�r), is estimated at each time-averaged bin of the light
curve containing N points following Pont et al. (2006),

�N =

r
�2
w

N
+ �2

r (3)

where �w is the white uncorrelated noise and �N is the
photon noise. For our best fit light curve, we find �w =

Figure 7. HST phase coe�cients for each of the spectroscopic
bins using di↵erential photometry individual parameter fitting.
Top: The 1st (black), 2nd order coe�cients (red, squares). Middle-
Top: The 3rd (black-circles) and 4th (red-circles) order coe�cients
showing a near zero variation over each wavelength bin. Middle-
bottom: The 5th (black-stars) and 6th order coe�cient (red-stars)
Bottom: The 7th order HST phase coe�cient for each bin. Note
the y axis scale for each plot with the corresponding white light
coe�cient marked as a solid line.

Figure 8. Raw white light curve with the breathing correction
function over-plotted as open squares (red) to show the fit to the
orbit-to-orbit trends evident in the data corresponding to the 7th
order parameter.

1.49⇥ 10�4, with �r = 4.97⇥ 10�5 using a bin size of N=10
(see Fig. 4) with a photon noise level of 6.8⇥ 10�5.

Another method used to empirically correct for re-
peating systematics between orbits is the divide-oot routine
developed by Berta et al. (2012). Divide-oot uses the out-
of-transit orbits to compute a weighted average of the flux
evaluated at each exposure within an orbit and divides the
in-transit orbits by the template created. This requires each
of the in-transit exposures to be equally spaced in time with
the out-of-transit exposures being used to correct them, so

c� 2012 RAS, MNRAS 000, 1–14
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TABLE 4
Wavelength Dependent Transit Depths from White Light

Residual Method

Wavelength Depth White Errora Total Errora Reduced χ2

µm ppm ppm

1.145 909 20 23 0.81
1.163 940 19 24 0.77
1.182 896 19 23 0.93
1.200 928 19 22 0.77
1.218 910 19 26 0.82
1.237 895 18 24 0.82
1.255 922 18 20 0.76
1.274 936 19 23 0.88
1.292 944 18 30 0.83
1.311 970 18 29 1.04
1.329 933 18 21 0.87
1.348 922 18 26 0.80
1.366 929 18 26 0.81
1.384 922 18 28 0.83
1.403 915 18 18 0.89
1.421 983 18 18 0.84
1.440 978 18 19 0.85
1.458 960 18 21 0.75
1.477 936 19 26 0.68
1.495 924 19 26 0.89
1.513 962 19 25 0.91
1.532 941 19 29 0.89
1.550 942 19 32 0.97
1.569 960 20 42 0.95
1.587 970 20 26 0.87
1.606 1001 20 29 0.87

a White noise measurement errors are estimated using a Markov Chain
Monte Carlo analysis, which implicitly assumes that individual measure-
ment errors are Gaussian distributed and uncorrelated. Total measure-
ment errors are calculated by comparing the MCMC errors to a residual
permutation method that better accounts for time-correlated noise and
taking the larger of the two in each wavelength bin.
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Fig. 8.— Wavelength-dependent transit depths averaged over
the two visits, where the depths are defined as the square of the
planet-star radius ratio Rp/R⋆ in each band. Depths derived us-
ing the spectral template fitting technique (Deming et al. 2013;
Knutson et al. 2014) are shown as filled circles, and depths from
the white light residual fitting technique (Kreidberg et al. 2014)
are shown as open circles. No offset has been applied to either
data set, demonstrating that the average transit depths are also in
good agreement.

sures, we summed the spectra by column. The final step
in the reduction process is to correct for drift of the spec-
tra in the dispersion direction over the course of a visit.
We used the first exposure from the first visit as a tem-
plate and shifted all subsequent spectra to the template
wavelength scale. The spectra shifted by a total of 0.3
pixels over the five orbits contained in our observations,
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Fig. 9.— Comparison of uncertainties on the reported tran-
sit depths under the assumption of either white, Gaussian noise
(open circles) or allowing for time-correlated noise using the resid-
ual permutation method for estimating uncertainties (filled cir-
cles). Errors derived using the spectral template fitting technique
(Deming et al. 2013; Knutson et al. 2014) are shown as blue cir-
cles, and depths from the white light residual fitting technique
(Kreidberg et al. 2014) are shown as red circles.

which is larger than the approximately 0.01 pixel drift
observed in previous scanning mode observations of GJ
1214b (Kreidberg et al. 2014). This increased drift may
be related to the longer scan length and faster scan rate
utilized for these observations as compared to GJ 1214b.
We binned the spectra in four-pixel-wide channels,

yielding 26 spectrophotometric light curves between 1.15
and 1.61 µm. The light curves show orbit-long ramp-
like systematics that are characteristic of WFC3 data.
We correct for these systematics using the divide-white
technique, which assumes that the observed effects have
the same shape across all wavelengths. We fit each spec-
troscopic light curve with a transit model multiplied by a
scaled vector of systematics from the best-fit white light
curve and a linear function of time. We fix i and a/R⋆ to
the values reported in Table 1. The fit to each channel
has six free parameters: one transit depth, four scaling
factors for the systematics (one for each visit and scan
direction), and the linear slope. As before, we calculate
the four-parameter nonlinear limb-darkening coefficients
using a PHOENIX stellar atmosphere model where we take
the flux-weighted average of the theoretical stellar inten-
sity profile within each photometric bandpass. We set
the uncertainties on individual points equal to the sum
of the the photon noise and read noise in quadrature. We
list the best-fit values and corresponding errors in Table
4.
We report uncertainties on the transit depths corre-

sponding to 1σ confidence intervals from either a Markov
chain Monte Carlo (MCMC) fit, which implicitly assumes
white (Gaussian and uncorrelated) noise, or a residual
permutation analysis that better accounts for any time-
correlated noise present in the data. We take the larger
of the two errors in each wavelength bin as our final un-
certainties and provide the MCMC only errors separately
in Table 4 for comparison. Our residual permutation er-
rors are on average 30% larger than those obtained with
MCMC. This suggests that there is some time-correlated
noise in the light curves, which is most likely the result of
imperfect corrections for visit- and orbit-long systematic
trends in the data.

Knutson et al. 2014
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Figure 3 | Spectral retrieval results for a two-component (hydrogen/helium
and water) model atmosphere for GJ 1214b. The colours indicate posterior
probability density as a function of water mole fraction and cloud-top pressure.
Black contours mark the 1s, 2s and 3s Bayesian credible regions. Clouds
are modelled as having a grey opacity, with transmission truncated below
the cloud altitude. The atmospheric modelling assumes a surface gravity of
8.48 m s22 and an equilibrium temperature equal to 580 K.
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Figure 2 | The transmission spectrum of GJ 1214b. a, Transmission
spectrum measurements from our data (black points) and previous work (grey
points)7–11, compared to theoretical models (lines). The error bars correspond
to 1s uncertainties. Each data set is plotted relative to its mean. Our
measurements are consistent with past results for GJ 1214b using WFC3
(ref. 10). Previous data rule out a cloud-free solar composition (orange line),
but are consistent with either a high-mean-molecular-mass atmosphere
(for example, 100% water, blue line) or a hydrogen-rich atmosphere with
high-altitude clouds. b, Detailed view of our measured transmission spectrum
(black points) compared to high-mean-molecular-mass models (lines). The

error bars are 1s uncertainties in the posterior distribution from a Markov
chain Monte Carlo fit to the light curves (see the Supplementary Information
for details of the fits). The coloured points correspond to the models binned at
the resolution of the observations. The data are consistent with a featureless
spectrum (x2 5 21.1 for 21 degrees of freedom), but inconsistent with cloud-
free high-mean-molecular-mass scenarios. Fits to pure water (blue line),
methane (green line), carbon monoxide (not shown), and carbon dioxide
(red line) models have x2 5 334.7, 1067.0, 110.0 and 75.4 with 21 degrees of
freedom, and are ruled out at 16.1s, 31.1s, 7.5s and 5.5s confidence,
respectively.
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and many more…

&
&
Figure&2:&The&transmission&spectrum&of&HAT5P511b.&&a,!Our!WFC3!observations!
show!a!transit!depth!variations!in!agreement!with!a!hydrogen[dominated!
atmosphere.!The!coloured,!solid!lines23,24!correspond!to!matching!markers!
displayed!in!Fig.!3.!The!error!bars!represent!the!standard!deviations!over!the!
uncertainty!distributions.!!High!mean!molecular!mass!atmospheres!(dark!blue!line)!
are!ruled!out!by!our!observations!by!>3σ.!The!WFC3!spectrum!was!allowed!to!shift,!
as!a!unit,!over!these!uncertainties.!!b,!Detailed!view!of!our!WFC3!spectrum.!!For!the!
purposes!of!visually!comparing!the!spectral!significance,!we!shifted!all!of!the!models!
by!98ppm!in!the!grey!region!and!bottom!panel.!!
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What we can learn: Interpreting the atmosphere
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…, but we not always agree…

Crouzet et al. (2012)
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Fig. 17.— Spectrum of XO-1b derived from this work using the joint analysis of the 1st and

2nd visits (black), from Tinetti et al. (2010) using the 2nd visit only (red), and from Gibson

et al. (2011b) using the 2nd visit only (green). In our spectrum, independent points are

highlighted (black filled circles with 1-� error bars). Intermediate points (open circles) are

shown to aid comparison; their error bars are similar to the highlighted points and are not

represented for clarity. A synthetic spectrum of an irradiated giant planet including water

vapor from Burrows et al. (2010) is shown (blue line), and averaged at the wavelengths of

independent data points (blue points).
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The data and the models

Data Models
• Low Signal-to-Noise data  

• Analysis often depending on 
parametric solutions 

• Inherent biases and error 
covariances associated to each 
analysis framework 

• Highly correlated parameter 
spaces 

• User defined molecule 
selections/inputs 

• Molecular opacity Line Lists 

• Self-consistent vs data quality 

• Coherent analysis of multiple 
data sets 

• Non-parametric approach

• Full mapping of correlated 
likelihoods 

• Non-parametric approach



The data and the models

Data Models

• Low Signal-to-Noise data  

• Analysis still often depending 
on parametric solutions 

• Inherent biases and error 
covariances associated to each 
analysis framework 

• Highly correlated parameter 
spaces 

• User defined molecule 
selections/inputs 

• Molecular opacity Line Lists 

• Ab initio models vs data driven 

• Coherent analysis of multiple 
data sets 

• Non-parametric approach

• Full mapping of correlated 
likelihoods 

• Non-parametric approach



Non-parametric data analysis

What if we will never know the instrument response of most  
generic instruments and don’t know how to calibrate it?  

Can we still do something with the data?  

• Cleaning the data e.g. wavelet decomposition 

• De-trending the data using statistics  
• Supervised machine learning  
• Unsupervised machine learning



Example: Spitzer - IRAC
The issue of persistence and inter and intra pixel variations 
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UNSUPERVISED MACHINE LEARNING:  
THE COCKTAIL PARTY PROBLEM

Deconvolution 
using multiple  
observations

Person 1

Person 2

Person 3

Demixed signals

 We deconvolve a mixture of signals only 
assuming that the signals are  

statistically independent of each other



Using information entropy to de-correlate data

We	
  op&mise	
  the	
  sta&s&cal	
  independence	
  of	
  the	
  
source	
  signals,	
  s,	
  by	
  minimising	
  their	
  respec&ve	
  
Shannon	
  entropies.	
  	
  	
  

2.1. ICA in the context of exoplanetary
lightcurves

In this publication, we focus on the applica-
tion of ICA to exoplanetary lightcurve analysis.
Let us consider multiple time series observations
of the same exoplanetary eclipse signal either in
parallel, by performing spectrophotometry with a
spectrograph, or consecutive in time (as explained
in section 5.3).

Without excluding the most general case, let
us focus on a time-resolved spectroscopic measure-
ment of an exoplanetary eclipse. For most obser-
vations, the signal recorded is a mixture of astro-
physical signal, Gaussian (white) noise and sys-
tematic noise components originating from instru-
mental defects and other sources such as stellar
activity and telluric fluctuations. We can there-
fore write the individual time series as sum of the
desired astrophysical signal, s

a

, systematic (non-
Gaussian) noise components, s

sn

, and Gaussian
noise, s

wn

. We can now define the underlying lin-
ear model of our time series data to be

x(t) =a1sa(t) + a2ssn1(t) + a3ssn2(t) + ...+ s

wn

(t)
(5)

or

x

k

= a

k1sa +
NsnX

l2=1

a

kl2ssn,l2 +
NwnX

l3=1

a

kl3swn,l3 (6)

where N

sn

and N

wn

are the number of system-
atic and white noise components respectively and
N = N

sn

+ N

wn

+ 1 assuming only one com-
ponent is astrophysical.

2.2. Demixing signals using ICA

The basic assumptions of ICA are that the ele-
ments comprising s, s

l

, are mutually independent
random variables with probability densities, p

l

(s
l

).
We further assume that all (or at least one) of
the probability densities, p

l

(·), are non-Gaussian.
This non-Gaussianity is key since it allows the de-
mixing matrix, W, to be estimated. From the
central limit theorem, we know that a convolution
of any arbitrary probability distribution functions
(pdfs) that feature a formal mean and variance,
asymptotically approaches a Gaussian distribution
in the limit of largeN (Riley et al. 2002). In other

words, the sum of any two non-Gaussian pdfs (ie.
p

l

(·) and p

l+1(·)) is more Gaussian than the re-
spective original pdfs. Therefore by maximising
the non-Gaussianity of the individual signals, we
maximise their statistical independence. (Comon
1994; Hyvärinen 1999; Hyvärinen & Oja 2000;
Koldovský et al. 2006; Hyvärinen & Oja. 2001;
Comon & Jutten 2000; Stone 2004).

2.2.1. Information Entropy

Although several measures of non-Gaussianity
exist (we refer the reader to Cichocki & Amari
(2002), Hyvärinen & Oja (2000), Hyvärinen &
Oja. (2001) and Comon & Jutten (2000) for de-
tailed summaries), we here use the concept of ’ne-
gentropy’ (Brillouin 1953). Negentropy is derived
from the basic information-theoretical concept of
di↵erential entropy. In information theory, in close
analogy to thermodynamics, the entropy of a sys-
tem is at its maximum when all data points are at
its most random. In thermodynamics we measure
the distribution of particles, in information theory
it is the probability distribution of a random vari-
able. From information theory we can derive the
fundamental result that a Gaussian distribution
has the largest entropy among all random vari-
ables of equal variance and known mean. Hence,
by minimising the entropy of a variable, we max-
imise its non-Gaussianity. For a random vector y,
with random variables y

i

, i = 1, ..., n, the entropy
is given by

H(y) = �
Z

p(y)log2p(y)dy (7)

where H(y) is the di↵erential or Shannon entropy
(Shannon 1948) and p(y) is the pdf of the random
vector y. H(y) is at its minimum when p(y) is
at its most non-Gaussian. We can now normalise
equation 7 to yield the definition of negentropy:

J(y) = H(y
gauss

)�H(y) (8)

where y
gauss

is a random Gaussian vector with the
same covariance matrix as y. Now y is at its most
non-Gaussian when J(y) is at its maximum. It is
important to note that negentropy is insensitive to
a multiplication by a scalar constant. This has the
important consequence of introducing a sign and
scaling ambiguity into the retrieved signal compo-
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1.1. Limitations of conventional ICA

Whilst it has been shown that ICA is well suited
to the de-correlation of non-Gaussian signals in
simultaneously observed exoplanetary time series,
it has two mayor limitations that will be addressed
in this paper. These are:

1) Susceptibility to Gaussian noise: to de-
correlate non-Gaussian signals, ICA is inherently
limited to a low degree of Gaussian white noise
in the observed time series observations. This so
far posed a significant limitation on the types of
data that can be de-correlated. Waldmann et al.
(2013) showed that medium to high-SNR space
based observations are somewhat permissible but
noisier ground-based observations of exoplanetary
time series are often out of reach for conventional
ICA algorithms.

2) Amplitude and Sign ambiguity: Like all blind
source separation (BSS) algorithms, ICA can de-
correlate signals up to an amplitude and sign am-
biguity. As explained in section 1.2, the algorithm
attempts to simultaneously estimate the source
signals, s, as well as their respective mixings (the
mixing matrix), A that represent our observations
x = A�1s. Given both s and A are unknown,
a scalar multiplication of either can be canceled
by an equal division of the other. Hence no BSS
algorithms attempt the retrieval of scalar ampli-
tudes of the source signals s. Waldmann et al.
(2013) resolved this by iteratively fitting compo-
nents of s onto observed out-of-transit data to re-
trieve the lost scaling factors. Whilst this is a valid
approach, it again limits us to high-SNR observa-
tions as too much scatter in the observed time-
series inhibits a good convergence of such a scaling
factor regression.

In this paper we will address both these limita-
tions by defining ICA in orthogonal wavelet space.
In the wavelet domain, as explained in later sec-
tions, we can threshold Gaussian wavelet coe�-
cients and increase the signal’s sparsity, making
the ICA algorithm more robust in di�cult S/N
conditions. We can furthermore inject a sparse
wavelet coe�cient calibration signal that allows
us to directly calibrate the amplitudes of the mix-
ing matrix A without the need of any post-ICA
scaling factor regression.

A quick introduction to BSS and Wavelets
are given in sections 1.2 & 1.3, a description of
the Wavelet-ICA and noise thresholding in sec-
tion 2. Section 2.1 describes the amplitude cali-
bration algorithm which is demonstrated in sec-
tions 3.1 & 3.2 using simulations and Spitzer/IRS
data respectively.

1.2. Blind Source Separation

Besides ICA, other BSS algorithms include
principal component analysis (PCA), factor anal-
ysis (FA), projection pursuit (PP), non-negative
matrix factorisation (NMF), stationary subspace
analysis (SSA), morphological component analysis
(MCA) amongst others. For an extensive review
of these algorithms we refer the interested reader
to Comon & Jutten (2010) as well as relevant ICA
literature (Oja 1992; Hyvärinen 1999; Hyvärinen
& Oja 2000; Hyvärinen & Oja. 2001; Stone
2004; Koldovský et al. 2006, 2005; Yeredor 2000;
Tichavský et al. 2008). Whereas the underly-
ing statistical assumptions di↵er significantly, all
these algorithms take N simultaneously observed
signals x

k

(t), where k is the observed signal index,
and de-correlate these into the source signals s

l

(t),
where l is the source signal index. They all follow
the functional form

x

k

(t) = a

k,1s1(t) + a

k,2s2(t) + a

k,3s3(t)+ (1)

+ a

k,4s4(t) + ...+ a

k,l

s

N

(t).

where a

k,l

are scaling factors. Assuming that the
exoplanetary observation consists of a mixture of
astrophysical signal, s

a

(t), instrument or stellar
systematic noise, s

sn

(t), and the white noise sig-
nal, s

wn

(t), from a Gaussian process wn(t), we can
express equation 1 as sum of vectors (the time-
dependance has been dropped for clarity):

x

k

= a

k,1sa + a

k,2swn

+
NsnX

l=3

a

k,l

s

sn

(2)

where N

sn

is the number of systematic noise
sources. Finally this can also be expressed as
column vectors x = [x1(t), x2(t), . . . , xk

(t)]T ,
s = [s1(t), s2(t), . . . , sl(t)]T and the mixing matrix
A,

x = As. (3)

2

observed  
time series

astrophysical 
 source systematic  

noise
white noise

X = AS

observations

signals

mixing matrix



Unsupervised learning: De-trending Spitzer/IRAC

– 29 –

ID 30590 ID 40732 Agol 8 micron0.600

0.620

0.640

0.660

0.680

b

 

 

This paper
Agol 2010
Desert 2009, 2011
Beaulieu 2008

ID 30590 ID 40732 Agol 8 micron8.40
8.60
8.80
9.00
9.20
9.40
8.40

a 0

 

 

This paper
Agol 2010
Desert 2009, 2011

ID 30590 ID 40732 Agol 8 micron85.40

85.60

85.80

86.00

86.20

i

 

 

This paper
Agol 2010
Desert 2009, 2011

ID 30590 ID 407320.1535
0.1540
0.1545
0.1550
0.1555
0.1560
0.1565

p

 

 

This paper
This paper (only p free)
Desert 2009,2011
Beaulieu 2008

ID 30590 ID 407320.0236

0.0238

0.0240

0.0242

0.0244

0.0246

p2

 

 

This paper
This paper (only p free)
Desert 2009, 2011
Beaulieu 2008

Fig. 11.— From top to bottom: Comparisons of the parameters b, a0, i, p, p2, obtained in

this paper and in the others discussed here.
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Fig. 6.— Left panels: (blue) detrended light-
curves for the four observations with (red) best
transit models overplotted, binned over 7 points;
best transit models are calculated with p, a0, and
i as free parameters, and Phoenix quadratic limb
darkening coefficients (see Sec. 2.3.1). Right pan-
els: Residuals between detrended light-curves and
best transit models; black horizontal dashed lines
indicate the standard deviations of residuals.
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raw 
lightcurve 

de-trended 
lightcurve

De-trending Spitzer photometry without  
prior assumptions gives (for the first time) 
consistent results across data sets

HD 189733b

GJ 436b

Morello et al. 2014

Morello et al. 2015a

Morello et al. 2015

Figure 3.1: Left: representation of point source spread in more than one
pixel; Middle: representation of a gaussian fit on the PRF; Right: the corre-
spondance between the image on the detector and the intensity profile of the
fitted PRF; it is shown how the global PRF is the sum of the contributions
from individual pixels.

If the position of the star on the detector is stable, as in many Spitzer ob-
servations, including the ones I analyzed, there are pixels detecting the as-
trophysical signals at any time. My idea is to use simultaneous lightcurves
of individual pixels (in the following pixel-lightcurve), that is the temporal
series of lectures from single pixels, as mixed signals from which to extract
the independent components. In an ideal case, i.e. a star with a gaussian pdf
with a fixed centroid on the detector and all pixels equivalent, each pixel-
lightcurve is a scaled version of the global lightcurve. In the ideal case it is
true that each pixel-lightcurve would contain the same source signals, but
with the same relative mixing coe�cients, in other words the rows of the
mixing matrix A (see Eq. 2.3) would be all proportional to the first row, so
that A is a not invertible matrix with rank(A) = 1, therefore no separations
would be possible. However the telescope pointing is subject to jitter and
the source moves slightly with respect to the pixels during the whole obser-
vation. I found, through a few simulations, that introducing a fluctuation of
the centroid with a semiamplitude of a few tenths of the pixel length, that
is of the order of centroid fluctuations in Spitzer lightcurves that I analyze
in this Thesis, it is possible to separate several components. If confirmed
this fact, it would be quite useful and interesting, because centroid fluctua-
tions are present in every observation, and they should be crucial to perform
astrophysical signals decompositions, while up to now they have been con-
sidered as a disturbance. I suppose also that slight di↵erences in the pixels

31

Morello et al. 2015b
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The data and the models

Data Models

• Low Signal-to-Noise data  

• Analysis still often depending 
on parametric solutions 

• Inherent biases and error 
covariances associated to each 
analysis framework 

• Highly correlated parameter 
spaces 

• User defined molecule 
selections/inputs 

• Molecular opacity Line Lists 

• Ab initio models vs data driven 

• Coherent analysis of multiple 
data sets 

• Non-parametric approach

• Full mapping of correlated 
likelihoods 

• Non-parametric approach
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Models: The TauREx retrieval framework

Fletcher et al. 2007 
Terrile et al. 2008 

Madhusudhan & Seager 2009 
Lee et al. 2011 
Line et al. 2012 

Benneke & Seager 2012 
Griffith 2014

current retrievals• A signal-processing approach 

• New custom built high temp. line-lists 

• Advances in Bayesian sampling  

• Advances in Pattern recognition 

• Advances in large scale automation 

Waldmann et al. 2015a,b; Rocchetto et al. in prep



Tau-REx - Next Gen atmospheric retrieval

• Fully Bayesian Retrieval  
• MCMC  
• Nested Sampling 

• Custom made opacity line-lists 
from the ExoMol project 

• Prior composition selection through 
pattern recognition software 

• Full parallelisation for cluster 
computing 

Central
Data Module 

Molecular + Atomic
Line ListsParameters Observation 

Marple Module

Adaptive-MCMC Nested SamplingLM-BFGS 
minimization

Occam modulePosterior 
distribution analyser

Bayesian Evidence, P(M
 | x)

Final 
transmission

spectrum

T-P Profile

1

3

2

4

Transmission/
Emission 

Forward Model

Input

Model &
Data handling

Minimization / Sampling

Output
Temperatures
Mixing ratios

⌧REx
Retrieval of Exoplanet atmospheres⌧

Retrieval of !
Exoplanet !
atmospheres⌧ ⌧

Waldmann et al. 2015a,b; Rocchetto et al. in prep



Custom built line lists

High temperature ExoMol line-lists 

Line-by-line forward model 

Non-linearly sampled for  
optimal computation 

Exact line broadening 

Waldmann et al. 2015a,b; Rocchetto et al. in prep



The Marple Module

• Constrain prior space by finding  
most likely absorbers.  

• Custom built pattern recognition 

• Based on ‘eigenface’ facial recognition

Waldmann et al. 2015a,b; Rocchetto et al. in prep



Emission Spectroscopy: The issue with TP profiles…

•  In emission spectroscopy we must solve for the atmospheric opacities as well as the 
atmospheric temperature-pressure profile.  

•  The Temperature-Pressure profiles are degenerate and notoriously hard to constrain. 

Parametric TP-profiles Layer-by-layer TP-profiles 

+ Easy to implement  
+ Few (<10) free parameters  
+ Good convergence in low S/N 

regimes 

- Can only fit TP-profile within 
predetermined functional form   

- Potentially unrealistic assumptions

+ Very objective -> No assumptions 
on atmosphere. 

- Many (>30) free parameters  
- Poor convergence properties in low 

S/N regimes 



Emission Spectroscopy: The issue with TP profiles…

• Compute parametric solution
• Obtain temperature-pressure covariance 
• Relax parametric solution to 

layer-by-layer TP-profile, 
using the covariance as 
convergence aid

• Achieves a ‘fine-tuning’ of the 
parametric solution.

Waldmann et al. 2015b
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Coherently mapping the correlated parameter spaces                                          

• Using MCMC and Nested Sampling 

• Fully map the likelihood space 

• Global model selection  
(Bayesian Evidence) 

• Nested model selection  
(Savage Dickey Ratio)

MULTINEST: efficient and robust Bayesian inference 1609

Figure 5. Toy model 1: (a) two-dimensional plot of the likelihood function defined in equation (32); (b) dots denoting the points with the lowest likelihood at
successive iterations of the MULTINEST algorithm. Different colours denote points assigned to different isolated modes as the algorithm progresses.

Table 1. The local log-evidence values of each mode for the toy
model 1, described in Section 6.1, calculated through numeri-
cal integration on a fine grid (the ‘true log(Z)’) and using the
MULTINEST algorithm.

Mode True local log(Z) MULTINEST local log(Z)

1 233.33 233.20 ± 0.08
2 233.33 233.10 ± 0.06
3 233.33 233.48 ± 0.05
4 233.33 233.43 ± 0.05
5 233.33 233.65 ± 0.05
6 233.33 233.27 ± 0.05
7 233.33 233.14 ± 0.06
8 233.33 233.81 ± 0.04
9 232.64 232.65 ± 0.12

10 232.64 232.43 ± 0.16
11 232.64 232.11 ± 0.14
12 232.64 232.44 ± 0.11
13 232.64 232.68 ± 0.11
14 232.64 232.84 ± 0.09
15 232.64 233.02 ± 0.09
16 232.64 231.65 ± 0.29
17 231.94 231.49 ± 0.27
18 231.94 230.46 ± 0.36

log(Z)′] and using MULTINEST, are listed in Table 1. We see that
there is good agreement between the two estimates.

6.2 Toy model 2: Gaussian shells likelihood

We now illustrate the capabilities of our MULTINEST in sampling
from a posterior containing multiple modes with pronounced (curv-
ing) degeneracies, and extend our analysis to parameter spaces of
high dimension.

Our toy problem here is the same one used in FH08 and Allanach
& Lester (2008). The likelihood function in this model is defined as

L(θ ) = circ(θ ; c1, r1, w1) + circ(θ ; c2, r2, w2), (33)

where

circ(θ ; c, r, w) = 1√
2πw2

exp
[
− (|θ − c| − r)2

2w2

]
. (34)

In two dimensions, this toy distribution represents two well-
separated rings, centred on the points c1 and c2, respectively, each of
radius r and with a Gaussian radial profile of width w (see Fig. 6).
With a sufficiently small w value, this distribution is representa-
tive of the likelihood functions one might encounter in analysing
forthcoming particle physics experiments in the context of beyond-
the-Standard-Model paradigms; in such models, the bulk of the
probability lies within thin sheets or hypersurfaces through the full
parameter space.

We investigate the above distribution up to a 30-dimensional pa-
rameter space Θ with MULTINEST. In all cases, the centres of the two
rings are separated by 7 units in the parameter space, and we take
w1 = w2 = 0.1 and r1 = r2 = 2. We make r1 and r2 equal, since in
higher dimensions any slight difference between these two values
would result in a vast difference between the volumes occupied by
the rings and consequently the ring with the smaller r value would
occupy a vanishingly small fraction of the total probability volume,
making its detection almost impossible. It should also be noted that
setting w = 0.1 means that the rings have an extremely narrow
Gaussian profile, and hence they represent an ‘optimally difficult’
problem for our ellipsoidal nested sampling algorithm, since many
tiny ellipsoids are required to obtain a sufficiently accurate repre-
sentation of the iso-likelihood surfaces. For the two-dimensional
case, with the parameters described above, the likelihood is shown
in Fig. 6.

In analysing this problem using the methods presented in FH08,
we showed that the sampling efficiency dropped significantly
with increasing dimensionality, with the efficiency being less than
2 per cent in 10 dimensions, with almost 600 000 likelihood eval-
uations required to estimate the evidence to the required accuracy.
Using 1000 active points in MULTINEST, we list the evaluated and
analytical evidence values in Table 2. The total number of likeli-
hood evaluations and the sampling efficiencies are listed in Table 3.
For comparison, we also list the number of likelihood evaluations
and the sampling efficiencies with the ellipsoidal nested sampling
method proposed in FH08. One sees that MULTINEST requires an
order of magnitude fewer likelihood evaluations than the method of
FH08. In fact, the relative computational cost of MULTINEST is even
less than this comparison suggests, since it no longer performs an
eigen-analysis at each iteration, as discussed in Section 5.2. Indeed,
for this toy problem, the EM partitioning algorithm discussed in
Section 5.2 was on average called only once per 1000 iterations of
the MULTINEST algorithm.

C⃝ 2009 The Authors. Journal compilation C⃝ 2009 RAS, MNRAS 398, 1601–1614
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Feroz et al. 2009

• Working towards an integrated approach 

• From raw data -> final molecular abundances in one 
coherent retrieval.  

• Unified likelihood space correctly propagates all errors 
and correlations 



Building the infrastructure

Data de-trending + retrieval models 
unified in objective Python & C++ 

Full MPI and OpenMP support for 
cluster computing 

Intelligent de-bugging algorithms and 
failsafes  

Providing the infra-structure for future 
missions, e.g.: JWST, ARIEL, etc 



Conclusion

•  Both data analysis and models need to move towards a less 
heuristic footing  

•  In data analysis, Independent Component Analysis, Gaussian 
Processes and Wavelet approaches become established now 

•  In atmospheric retrieval models, the synergy between machine 
learning and fully Bayesian approaches are key 

•  Both data analysis and models need to work together to fully 
constrain error bars and map potential biases 

• Important infrastructure for JWST and ARIEL

Thank you



Additional stuff



Not all parameters behave the same way

Error-bar on CO abundanceError-bar on H2O abundance

• Ability to retrieve molecular abundance depends on the nature of the molecule 

• Absorbers across a broad wavelength range are less prone to low resolution data 

• Temperature retrieval is almost solely dependent on Signal-to-Noise

arXiv:1409.2312
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Constraining the prior space - the Marple module

The Marple module: 
Spectroscopic pattern recognition

arXiv:1409.2312
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where ✏ is the error on the observed spectral point.
As opposed to the nested sampling described in
the next section, an MCMC does not sample
the Bayesian partition function (also known as
Bayesian Evidence) and equation 19 reduces to

P (✓|x,M) / P (x|✓,M)P (✓,M). (21)

6.2.1. MCMC

MCMC routines are commonly used in the field
of extrasolar planets (e.g. Ford 2006; Burke et al.
2010; Bakos et al. 2007; Knutson et al. 2007;
Cameron et al. 2007; Charbonneau et al. 2009;
Bean et al. 2010; Kipping & Bakos 2011; Gre-
gory 2011; Crouzet et al. 2012; Kreidberg et al.
2014). T -REx provides an implementation of
the Delayed-Rejection Adaptive-MCMC (DRAM,
Haario et al. 2006). We refer the interested reader
to the cited literature and here only provide a
brief overview. The DRAM algorithm di↵ers
from a more classical Metropolis-Hastings sampler
(Metropolis & Rosenbluth 1953; Hastings 1970;
Brooks et al. 2011) in two aspects: 1) It imple-
ments a delayed rejection algorithm and 2) an
adaptive proposal distribution calibrated using the
covariance of the sample path of the MCMC chain.
For additional information on DRAM, we refer the
reader to Appendix A and the relevant literature.

T -REx runs several MCMC chains in parallel
to check convergence and increase the sampling
of the likelihood space. The number of chains is
user defined but usually set to 4-5. The first pri-
mary chain is started at the optimal values de-
termined by the LM-BFGS, avoiding significant
burn-in time (Brooks et al. 2011). All secondary
chains’ starting positions are o↵set from the op-
timum by a random distance and direction of at
least 10% of the prior width. These secondary
chains are run with a burn-in period of typically
10% of the total chain length. Burn-in and chain
lengths are user defined.

6.2.2. Nested Sampling

Nested sampling (NS) algorithms (Skilling
2004, 2006; Mukherjee et al. 2006; Chopin &
Robert 2010; Keeton 2011; Jasa & Xiang 2005)
are becoming increasing popular in extrasolar
planets (e.g. Kipping et al. 2012; Placek et al.
2013). Here we include an implementation of
MultiNest (Feroz & Hobson 2008; Feroz et al.
2009, 2013). MCMC algorithms are commonly
used for parameter estimation by solving equa-
tion 21. Whereas MCMC explores the likelihood
space by means of a Markovian chain, NS performs
a general Monte Carlo (MC) analysis which is pe-
riodically constrained by ellipsoids encompassing
spaces of highest likelihoods. Note that unlike
MCMC, NS does not depend on a pre-determined
proposal density and can hence better explore
highly degenerate and non-Gaussian regimes. Us-
ing NS, we can compute the Bayesian evidence (or
simply evidence), which is given by the integral
required to normalising equation 21

E =

Z
P (✓|M)P (x|✓,M)d✓ (22)

where E = P (x|M) is the evidence. The evidence
allows us to test the adequacy of the model it-
self and to perform model selection as described
in the following section. Posterior distributions for
parameter estimations are returned as by-product
of MultiNest and should be similar to posteri-
ors obtained by the MCMC. Note that through
the very di↵erent sampling techniques and fewer
constraints on the proposal density for NS, we ex-
pect MCMC posteriors to be a ‘smoothed’ version
of the NS’s. T -REx allows the choice between
importance nested sampling (INS) and the more
classical NS. Through the sampling process, INS
retrains all accepted as well as rejected proposal
points which allows for a more accurate integra-
tion of the evidence (Feroz et al. 2013).

7. Model selection

For an inverse retrieval problem, such as the one
discussed here, the idea of model selection is highly
relevant but rarely discussed due to the computa-
tional expense and complexities involved. Here
we explicitly make the distinction between opti-
mal estimation of parameters and the adequacy of
the parameter and/or model itself.
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