Recognizing and characterizing terrestrial exoplanets

Pathways towards habitable planets II Bern, Switzerand, 13-17 July 2015

William B. Sparks, Maggie Turnbull

STScl, SETI

And thanks to the entire Exo-S team!

S. Seager, S. Domagal-Goldman, A. Roberge, J. Kasdin, M. Thomson, W. Cash, M. Kuchner, S. Shaklan & JPL design team

ε Eridani

HST ACS/WFC

200×200 arcsec

ε Eridani

HST ACS/WFC

200×200 arcsec

Box 30×20 arcsec

Hubble Extreme Deep Field (Illingworth et al 2013) ~10⁶s total

HST ACS/WFC

F606W 174ks

Box 30×20 arcsec

Hubble Extreme Deep Field (Illingworth et al 2013) ~10⁶s total

HST ACS/WFC

F606W 174ks

Box 30 ×20 arcsec

30th mag object

Circle radius 1 arcsec

Extragalactic Background

The deepest part of the XDF has a limiting magnitude near V ~ 31

7,121 galaxies above the 5-sigma significance level in \sim 4.7 arcmin².

Significant image crowding at V ~ 30, where 45% of the pixels contain galaxy light (Koekemoer et al. 2013).

Faint extragalactic sources appear unresolved

Other surveys (e.g. Windhorst et al. 2011) indicate we should expect a few dozen galaxies per arcmin^2 at V < 25: brighter, extended, galaxies will make planet detection difficult wherever they dominate the FOV.

1 arcmin² field from the Hubble XFD Extreme Deep Field (Illingworth et al. 2013).

Galactic Stars

Galactic Stars

Probabilities derived from: Besançon model of the Galaxy $l=0^{\circ}$ <u>http://model.obs-besancon.fr</u>

For Galactic latitudes above 30° (or below -30°) the probability of a contamination by a galactic star is less than 1%

However, at all galactic latitudes, the probability remains greater than 10⁻³

Within 10° of the galactic plane, the probability of finding a Galactic star in 1 arcsec^2 is >10%.

Almost one third, 26/96, of the Rendezvous target sample is within 10° of the galactic plane

ACS image (one orbit) 50×50 arcsec from SWEEPS Galactic bulge field, Sahu et al (2006) near the Galactic Center

Mitigation: in motion, sooner rather than later

Proper motion: Proper motion can discriminate between planets and background objects for *all* in sampe after a year. *Parallax*: about half the sample have easily measured parallax (~1-6 month but may not be compatible with mission constraints)

Orbital motion: Earth analog potentially detectable to 20 pc in 1 month (30° orbital longitude change). A significant but unknown, number of planets are likely to exhibit detectable orbital motion within a month.

For the majority of the highest priority targets, confirmation of a planet candidate can be done after a month or less using either common proper motion, parallax, or both

Mitigation: photometric

Colour-magnitude (B-V) & V

Stars red, galaxies blue

Earth (green), colours change due to diurnal rotation, cloud, phase >Planets are unremarkable in conventional colour/magnitude systems

IFU allows post-facto definition of photometric bandpasses

Besançon model of the Galaxy $l=0^{\circ} b=10^{\circ}$; s http://model.obs-besancon.fr/ CANDELS GOODS-S extragalactic source

Colour-colour (B-V) & (V-R)

Post-facto colour indices (example): (450–625) vs (875–950): *clean separation of planets*

Mitigation: polarimetric

Planets shining by scattered light of host star are expected to be polarized – few to tens %

- The density of background polarized sources is not known, but certainly much lower than the density of all background sources. P.A.within 5° of tangent vector, reduces additional 18×
- Uncertainty on polarization % scales with the SNR, uncertainty on P.A. scales with product of polarization and SNR (Miller, Robinson & Goodrich 1987)
- P.A. uncertainty 10°, requires 3σ detection of polarization degree leading to source 4–8× brighter than faintest detection (assuming 5σ flux detection limit).

Hence polarimetry candidate detection (PDI) & identification can be applied to planets which are modestly brighter than the faintest detectable*

*For polarimetric detection the entire spectrum can be used; hence improvement by about a factor 2 in favorable circumstances

Advantages of including polarization spectroscopy

Mission design:

- Wavefront correction
- > Detection differential method, PDI
- > Identification of candidates without revisit
- > Geometry exozodi disks
- > Characterization

Beware! polarization affecting appearance of spectrum everything is scattered light, could be polarized ~50%

Characterization includes:

- Rayleigh scattering in atmosphere
- Surfaces, ices, rock, oceans, cirrus, clouds
 - > Stam 2008; Zugger et al 2010 terrestrial; Kolokolova 2010 ices show glints
 - Seager 2000; Stam et al 2004; Marley & Sengupta 2011 giant planets

Remote sensing of liquids

- > Specular reflection from **oceans**; glint. Max P% Brewster's angle.
 - > For Earth, brightness significant near crescent (Robinson et al 2011, 2014)
 - > Cloud-free ocean world, glint dominates, high P% (Williams & Gaidos 2008).
- Rainbows; aerosols; clouds
 - > Classic Venus analysis, sulfuric acid rainbow Hansen & Hovenier 1974
 - See also Bailey 2007; Karalidi et al 2011

Peak rainbow phase angle versus refractive index (Bailey 2007)

Observe for a predetermined integration time

useful S/N on Earth twin => *large aperture telescope High contrast suppression system* (coronagraph or starshade) with:

Integral Field Spectrograph

Spectra of all sources in field

- > no concerns over "choosing", or acquisition, multiple systems the norm
- Post-facto band definition/PCA
- Speckle discrimination (some architectures)

include polarization capability

- > Detection
- Identification
- **Geometry**
- > Additional characterization

Simple option:

- Just observe every target star for predetermined time unbiassed inventory of local planetary demographics
- Revisit most interesting

Examples: above Kasdin et al left: Rodenhuis (2011) in Polarimetry with Extremely Large Telescopes

Conclusions

- > The problem and probabilities
 - Galactic
 - Extragalactic
- Solutions:
 - > Proper motion, parallax, orbital motion
 - Post facto spectroscopy/photometry/PCA
 - > Polarimetry
- Instrumentation can affect mission design
 - IFU, polarimetry
 - > Take inventory of local neighborhood
 - > Lets not skimp on the instrumentation
 - > Do we really need 10⁻¹⁰ suppression?
- Need photons, S/N large telescope to do it right: identification, photometry, spectroscopy, timing, polarimetry
- Advert: HST GO/AR-14320 Characterizing the Galactic and Extragalactic Background of Exoplanet Direct Imaging Targets P.I. M. Turnbull