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Outline

Planets in this talk are quite uninhabitable !

* Diversity in bulk composition of
transiting low-mass exoplanets

e Detectability of the mineral atmosphere
of hot rocky low-mass planets

e Characterization of atmospheres of
volatile-rich low-mass planets
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O No planet intermediate in size
between the Earth & Nepfune
In the Solar System.

“Super-Earths (SEs)”

9@ In contrast, SEs are common
beyond the Solar System.

@ Most of the SEs are orbiting
close to their host stars

Important issue: To understand
the properties and origin of

close-in hot/warm SEs
as a stepping-stone to habitable worlds



Planet Radius (Rg,,)

What Are They Like?

Mass vs. radius of super-Earths
with radii of < 2.7Re and masses measured to < 20% precision

from Dressing et al. (2015)
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1 @ They are remnants that
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O SEs are diverse in bulk
composition.
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Accretion & Migration

Bern Population Synthesis Models
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@ Super-Earths migrate wildly
in a complicated way

=?» Close-in SEs may have
come from beyond the
snowline

O Planets in HZs are not
always habitable planets.



Photo-evaporation of Icy super-Earths

Fate of icy super-Earths that undergo
photo-evaporative mass-loss for 10 Gyr water envelope
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Orbital Period [Dayl  pocky super-Earths might be
Figure from Kurosaki, Ikoma, & Hori (2014) remnants of iCY Planets-



Degeneracy in Composition

Silicate + iron + water

Silicate + iron

Uranus | Uranus
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Only From mass-rddlus relQﬂONShlP Figure from Valencia, Ikoma, Guillot+ (2010)



Atmosphere of Close-in Dry Rocky Planet

Calculated composition of atmosphere
on top of the magma ocean

from Miguel et al. (2011)
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The atmosphere consists of Na, K, Fe, SiO gases etc.,
which we call “the mineral atmosphere”.



Radiative Absorption

Ito, Ikoma, Kawahara et al. (2015 Ap])
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@ Absorption of Na, K & Fe dominates in the visible region.

@ SIiO absorbs UV well.
@ SiO also absorbs IR well, especially at “4 and 10 m



log Pressure [bar]

Temperature Profile

[to, Ikoma, Kawahara et al. (2015, Ap])

» Dissociation of SiO

-+ Thermal Inversion

due to strong UV absorption
by SiO and Vis absorption by
Na & K, which dominate IR
absorption.

Teq = 3000K
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1~ Artificial Jump in temperature
because thermal conduction

2000 3000 4000  was neglected for simplicity.
Temperature [K]

This T-P profile may show emission features
that are detectable via secondary-eclipse observation



Secondary Eclipse Depth

Mock spectrum of a super-Earth with a mineral atmosphere
orbiting a G star 100pc far from Sun by a 5m space telescope

(Observation time = 10 hour, Resolving power = 100 (Vis) & 10 (IR), Photon-noise limited)
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Detectable are the SiO features at 4 & 10 um
from a super-Earth with Teq > 2500K.



Dry or Wet Rocky Super-Earth?

Application to 55 Cnc e
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Low-Density Super-Earths

1) Rocky Super-Earths
w/ H-He Atmospheres
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Transmission Spectrum of Atmosphere
The case of GJ 1214 b

Ground-based observations Observation by HST
modified from Narita, Fukui, Ikoma+ (2013) Kreidberg et al. (2014)
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Transmission Spectrum of Atmosphere
The case of GJ 3470 b
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Pressure [bar]

Hydrocarbon Haze

Stellar UV

Chemical composition

of atmosphere with solar abundances Photolysis Ofi CHg4
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Synergies?

Primordial Earth Early Earth Present Earth

Magma ocean Reducing gas + Haze

Need to know much about haze

¥ relationship between haze properties and
atmospheric conditions (e.g., composition,
temperature, UV)

v knowledge from haze in the atmospheres
of Titan and the Solar System giant planets



Summary & Conclusions

We are clearly approaching Earth analogs. Planets
detected so far are, however, quite uninhabitable.

Understanding the compositional diversity of close-in
super-Earths and its origin is crucial for understanding
those of planets in habitable zones.

The "mineral” atmosphere of hot super-Earths could be an
interesting target for future space-based observation.

The atmosphere of low-density super-Earths has been
explored intensively via transmission spectroscopy.

= However, understanding properties of haze is a
bottleneck to further studies, which needs the synergy
between studies of the solar-system planets and
exoplanets.



