High-energy irradiances of Sun-like stars

Jorge Sanz-Forcada (CAB, Spain), Ignasi Ribas (ICE, Spain)

Outline

- Why should we care about XUV irradiation?
 Origin of XUV stellar radiation
 Stellar rotation, age and XUV
 How to know the XUV emission in other stars
- Watch out for stellar variability

Planetary climate

Atmospheric heating and evaporation

Atmospheric chemistry

Life evolution

Aurorae

Transiting planets have short period orbits, thus they are very close to the star (bias)...

... they receive much XUV radiation, they are inflated

X-ray flux vs planet mass

Sanz-Forcada et al. (2010, 2011)

- Dwarfs
- ◊ Solar System • ROSAT ■ Subgiants • XMM/Chandra

Lack of massive planets being irradiated. Possible explanations:

Rapid mass loss during first Gyr Effects of planet formation A combination of both

Photosphere (visible, 5000 K)

Corona (Fe XIV, 2 MK)

Chromosphere (H&K Ca II, T~10,000 K)

All flux in X-rays, EUV and FUV (≈1-1300 Å) is originated in the corona, transition region and upper chromosphere.

X-rays evolution with time

- Late type stars (F, G, K, M) have a corona.
- Activity depends on rotation. Rotation depends on age
- X-rays will decrease as star gets older (slower rotator)

Time evolution of XUV

We should care about rotational age, rather than real age

- Dependency log Lx vs log T:
- Maggio (1987): -1.5 (G)
- Ayres (1997): -1.74 (G2V)
- Ribas et al. (2005): -1.92 (1-20 Å), -1.27 (20-100 Å) (G2V)
- Penz et al. (2007): -1.69 (G)
- Penz & Micela (2008): -1.34 (M)
- Garcés et al. (2011): -1.55 (G-M)

XUV emission in solar ancestors

- X-rays (1-100 Å) o.k. EUV (100-920 Å) absorbed by interstellar medium
- Use solar spectrum to scale it by stellar size: only as first approximation
- Scale solar SED interpolating between X-rays and UV (e.g. Ribas+ 2005, Claire+ 2012): better approach, for broadband flux.
- Relate EUV flux and Lymann alpha (Linsky+ 2014): concerns on the calibration, and Ly a measurement.
 Broadband only (also solar models for 400-920 Å)
- Use coronal model to create a SED (Cnossen+ 2007, Sanz-Forcada+ 2011 - X-exoplanets): High spectral resolution SED. Best possible.

Comparison of EUV models of ϵ Eri (K2V intermediate activity) with measured broadband flux in EUVE and FUSE

(*) Linsky+ 2014 uses the same star to calibrate the relation Ly a vs EUV

We can not simply scale the solar EUV

XUV = X + EUV

α Cen, model

52%

35%

EK Dra

Medium

High

11% 48% 65%

Global fitting to a low-res. spectrum

Fluxes line-based fit

Only 2 or 3 values of temperature

Currently using ATOMDB v3.0.2 (APEC)

More than 30 temperature components

A coronal model requires information on both transition region and corona

Sanz-Forcada & Ribas (in prep.)

Solar evolution

Model of ε Eri based on Chandra + IUE data. EUVE spectrum of different epoch (lowered resolution for display)

Chadney et al. (2015)

Variability (flares, cycles)

14

12

10

Counts/s (binning 600 s)

30

- Flares are episodic
- More frequent in young stars
- CMEs associated, but highly directiondependent

β Com (pn+mos1+mos2, Jul 2003)

25

Time (hrs since JD2452840)

20

2.5

2.0

1.5

0.5

0.0

15

Counts/s (binning 600 s)

50

GRUPO 3

a Cen

(d)

Conclusions

- Stellar high energy radiation has strong influence in planet atmosphere
- XUV radiation decreases with age. Still high at 500-1000 Myr (life developed on Earth)
- Coronal models needed for detailed SED in the EUV range.
- UV and X-rays needed for coronal models. Tests show good fits to real data.
- Short term variability frequent at young ages
- Watch out for long term variability (at least factor ~2)