Planets on eccentric orbits: limits of the mean flux approximation

Pathways towards Habitable Planets
13-17/07/2015

Emeline BOLMONT
Université de Namur/ Naxys

Anne-Sophie Libert
Jérémy Leconte
Franck Selsis
Planets on eccentric orbits: limits of the mean flux approximation

Pathways towards Habitable Planets
13-17/07/2015

Emeline BOLMONT
Université de Namur/ Naxys

Anne-Sophie Libert
Jérémy Leconte
Franck Selsis
Limits of the mean flux approximation

“Habitable zone” planets on eccentric orbits

eccentricity = 0.36 eccentricity = 0.97

GJ 667Cc has an eccentricity between 0.3 and 0.4

hzgallery.org (S. Kane, D. Gelino) using Kopparapu et al. 2013, 2014
Limits of the mean flux approximation

Previous studies

Some previous studies have been done about that, among them: Williams & Pollard (2002), Spiegel et al. & Dressing et al. (2010), Wordsworth et al. (2011), Linsenmeier et al. (2015)

We perform here a parametric study, looking at planets of different eccentricities orbiting different kind of stars.
Limits of the mean flux approximation

Question(s): how robust is the mean-flux approximation to assess the habitability of planets?

Are these equivalent?

e=0.0

e=0.2

e=0.9
Question(s): how robust is the mean-flux approximation to assess the habitability of planets?

Does it depend on the host star?

Are these equivalent?

$L_\star = 1 \ L_\odot$

$L_\star = 10^{-2} \ L_\odot$

$L_\star = 10^{-4} \ L_\odot$

Sun

M-dwarf

Brown dwarf
Question(s): how robust is the mean-flux approximation to assess the habitability of planets?

Does it depend on the host star?

First, we do not take into account the spectral dependance of the star

\[L_* = 1 \, L_\odot \quad \text{L}_* = 10^{-2} \, L_\odot \quad \text{L}_* = 10^{-4} \, L_\odot \]
We investigated the “habitability” of an ocean planet receiving a mean insolation flux of $F_\oplus = 1366 \text{ W/m}^2$

Limits of the mean flux approximation
Climate simulations

We assess here the “habitability” of a planet based on the sea ice cover (as in Spiegel et al. 2008, Linsenmeier et al. 2015)

A planet is here considered habitable if it has a part of its ocean ice-free
Limits of the mean flux approximation

Climate simulations

The planet is on a synchronous orbit, with a zero obliquity
Limits of the mean flux approximation

Question: how robust is the mean-flux approximation to assess the habitability of planets?

Planet of semi-major axis a, eccentricity e \[r = a (1-e^2)^{1/4} \]

<table>
<thead>
<tr>
<th>e</th>
<th>r (AU)</th>
<th>peri (AU)</th>
<th>apo (AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.05</td>
<td>1.001</td>
<td>0.95</td>
<td>1.05</td>
</tr>
<tr>
<td>0.1</td>
<td>1.003</td>
<td>0.90</td>
<td>1.10</td>
</tr>
<tr>
<td>0.2</td>
<td>1.011</td>
<td>0.81</td>
<td>1.21</td>
</tr>
<tr>
<td>0.4</td>
<td>1.045</td>
<td>0.63</td>
<td>1.46</td>
</tr>
<tr>
<td>0.6</td>
<td>1.119</td>
<td>0.45</td>
<td>1.79</td>
</tr>
<tr>
<td>0.8</td>
<td>1.292</td>
<td>0.26</td>
<td>2.33</td>
</tr>
<tr>
<td>0.9</td>
<td>1.516</td>
<td>0.15</td>
<td>2.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e</th>
<th>$1 L_\odot$</th>
<th>$10^{-2} L_\odot$</th>
<th>$10^{-4} L_\odot$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>365.5</td>
<td>22.85</td>
<td>1.967</td>
</tr>
<tr>
<td>0.05</td>
<td>365.9</td>
<td>22.87</td>
<td>1.968</td>
</tr>
<tr>
<td>0.1</td>
<td>366.9</td>
<td>22.94</td>
<td>1.974</td>
</tr>
<tr>
<td>0.2</td>
<td>371.2</td>
<td>23.21</td>
<td>1.997</td>
</tr>
<tr>
<td>0.4</td>
<td>390.2</td>
<td>24.40</td>
<td>2.099</td>
</tr>
<tr>
<td>0.6</td>
<td>432.1</td>
<td>27.02</td>
<td>2.325</td>
</tr>
<tr>
<td>0.8</td>
<td>536.2</td>
<td>33.52</td>
<td>2.885</td>
</tr>
<tr>
<td>0.9</td>
<td>681.4</td>
<td>42.60</td>
<td>3.666</td>
</tr>
</tbody>
</table>

Bolmont et al., in prep
We performed climate simulations with the LMD generic global climate model (Wordsworth et al. 2010, 2011, 2013; Selsis et al. 2011, Forget et al. 2013)

- Spatial resolution: 64x48x30 (long, lat, alt)
 Radiative transfer (correlated k): 38x36 (thermal, stellar)
- Atmospheric composition: \(\text{N}_2, \text{CO}_2 \) (376 ppmv)
- Water cycle: variable amounts of water vapor and ice
 Albedo of surface water: \(A_{\text{oc}} = 0.07 \), Albedo ice/snow: \(A_{\text{ice}} = 0.55 \)
- Thermal inertia of the oceans: \(I_{\text{oc}} = 18000 \text{ J s}^{-1/2} \text{ m}^{-2} \text{ K}^{-1} \)
 Maximum ice thickness: \(h_{\text{ice}} = 1 \text{ m} \)
Limits of the mean flux approximation

$L_\star = \frac{1}{12} L_\odot$

Mean surface temperature [K]

Planet reaches equilibrium after 10 orbits (10 years)

Surface temperature [K]

Surface ice coverage [kg/m²]

Bolmont et al., in prep
Limits of the mean flux approximation

\(\frac{L}{L_{\odot}} = 1 \)

\(e = 0.2 \quad P = 371 \text{ day} \)

Max surface temperature [K]

On the day side: \(~30K\) temperature oscillations in 371 days

Surface temperature [K]

Surface ice coverage [kg/m²]

[Diagram showing temperature distribution and ice coverage]
Limits of the mean flux approximation

\[L_\star = 1 L_\odot \]

Only temporally habitable!

Mean Ice coverage \([\text{kg/m}^2]\)

Surface ice coverage \([\text{kg/m}^2]\)

\[e = 0.6 \]
\[P = 432 \text{ day} \]
Limits of the mean flux approximation

\[L_\star = 10^{-2} L_\odot \]

\[\begin{align*}
L_\star &= 1 \, L_\odot \\
P &= 365 \text{ day}
\end{align*} \]

Surface temperature [K]

\[\begin{align*}
L_\star &= 10^{-2} \, L_\odot \\
P &= 22.9 \text{ day}
\end{align*} \]

Surface temperature [K]

Surface ice coverage [kg/m²]

Surface ice coverage [kg/m²]
Limits of the mean flux approximation

\[L_\star = 10^{-2} L_\odot \]

\[e = 0.2 \]
\[P = 23.2 \text{ day} \]

Max surface temperature [K]

On the day side: 40K temperature oscillations in 20 days

Surface temperature [K]

Surface ice coverage [kg/m²]
Limits of the mean flux approximation

$L_\star = 10^{-2} L_\odot$

$e=0.9$
$P = 42.6$ day

Mean Ice coverage [kg/m2]

Surface ice coverage [kg/m2]

Thin layer of ice
Limits of the mean flux approximation

$L_\star = 10^{-4} L_\odot$

$L_\star = 1 L_\odot$
$P = 365 \text{ day}$

$L_\star = 10^{-2} L_\odot$
$P = 22.9 \text{ day}$

$L_\star = 10^{-4} L_\odot$
$P = 1.967 \text{ day}$

Surface temperature [K]

Surface ice coverage [kg/m2]
Limits of the mean flux approximation

\[L_\star = 10^{-4} L_\odot \]

e = 0.2
P = 1.997 day

Mean surface temperature [K]

Surface temperature [K]

Mean ice coverage [kg/m²]

Surface ice coverage [kg/m²]
Limits of the mean flux approximation

$L_\star = 10^{-4} L_\odot$

Max surface temperature [K]

On the day side: up to 100K temperature oscillations in 4 days!

Surface temperature [K]
Surface ice coverage [kg/m^2]

e=0.9
P = 3.666 day
Limits of the mean flux approximation

Habitability of eccentric ocean planets

Habitability = presence of surface liquid water

- Tidally locked ocean planets are only \textit{locally habitable} on the day side.

- For \textit{low eccentricities}, for all L_\star, the planets are \textit{locally habitable}.
 For $L_\star = 10^{-4} \ L_\odot$, for all ecc, the planets are \textit{locally habitable}.

- Planets around \textit{luminous stars} with \textit{high eccentricities} are only \textit{temporally habitable} around periastron (for $e \gtrsim 0.6$ for $L_\star = 1 \ L_\odot$, for $e \gtrsim 0.8$ for $L_\star = 10^{-2} \ L_\odot$). For $L_\star = 10^{-2} \ L_\odot$, $e = 0.9$, the planet is \textit{never habitable}.

- For \textit{moderate to high eccentricities}, the day side \textit{temperature variations} over a period of 365 days ($L_\star = 1 \ L_\odot$) to 4 days ($L_\star = 10^{-4} \ L_\odot$) can be \textit{huge}, this could have detrimental consequences for eventual life forms.
Limits of the mean flux approximation

Habitability of eccentric ocean planets

Habitability = presence of surface liquid water

For the planets we consider here...

Ocean planets

Synchronous rotation
zero obliquity

The higher the eccentricity of the planet or the higher the luminosity of the star, the less reliable is the mean flux approximation
Limits of the mean flux approximation

Next steps

• Take into account the spectral type of the stars (with François Forget and Martin Turbet, LMD)
 ➔ Effect on the ice-albedo feedback

• Consider other types of planets
 ➔ Earth-like planet, land planet, a planet with a Pangea-like continent, a planet with archipelagos

• Change the rotation rate of the planet

• Change the obliquity of the planet

• Investigate the impact of the tidal heat flux on the climates

• Investigate the effect of eccentricity oscillations on the climates
Thank you!
Thank you!
Limits of the mean flux approximation

$L_\star = 1 L_\odot$

e = 0.9